A NOTE ON MAXIMAL ORDERS OVER KRULL DOMAINS

Lieven LE BRUYN*

University of Antwerp, UIA, Belgium

Communicated by H. Bass Received 8 November 1981

0. Introduction

The classical Mori-Nagata theorem (stating that the integral closure of a Noetherian domain is a Krull domain) is recently generalized to rings satisfying a polynomial identity in the following result by M. Chamarie:

Theorem 0.1 [1]. If Λ is a Noetherian prime p.i.-ring with center R and ring of quotients Σ , then there exists an intermediate ring $\Lambda \subset \Lambda' \subset \Sigma$ which is a maximal order with center R^{\sim} (the complete integral closure of R) which is a Krull domain.

Unlike in the commutative case, this 'integral closure' is by no means unique. This difficulty prompts the following question:

Question A. If Λ is a maximal order over a Krull domain R, with ring of quotients Σ (which is a central simple algebra over K, the field of fractions of R), is it possible to describe all other maximal R-orders in Σ by means of 'invariants' of Λ ?

In this paper we provide a positive answer to this question using cohomology of the sheaf of normalizing elements of Λ (introduced in [3]). Furthermore, we will apply this result in Section 3 in order to solve:

Question B. If R is a locally factorial Krull domain with field of fractions K, give necessary and sufficient conditions on R such that all maximal R-orders in $M_n(K)$ are conjugated.

1. Preliminaries

Throughout, we will consider the following situation. R is a Krull domain with field of fractions K and Λ is a maximal R-order in some central simple algebra Σ over K.

*The author is supported by an NFWO/FNRS grant.

With O_R (resp. O_A). We will denote the structure sheaf of R (resp. A) over Spec(R). Our first objective is the introduction of the sheaf of normalizing elements of A, N_A . It is defined by assigning to an open set U of the Zariski topology on Spec(R) the sections

$$\Gamma(U, N_A) = N(\Gamma(U, O_A)) = \{x \in \Sigma^* : x\Gamma(U, O_A) = \Gamma(U, O_A)x\}.$$

Proposition 1.1. N_A is a sheaf of groups and the stalk in a prime p of Spec(R) equals $N(R_p)$.

Proof. Let us first check that N_A with inclusions as restriction morphisms is a presheaf. A typical open set of Spec(R) is of the form $X(I) = \{p \in \text{Spec}(R): I \not\subset p\}$ for some ideal I of R and it is well known that $\Gamma(X(I), O_A) = Q_I(A) = \{x \in \Sigma: L \in \mathcal{L}(I): Lx \subset A\}$ where $\mathcal{L}(I) = \{L \lhd R: I \subset \text{rad}(L)\}$. So, if $X(J) \subset X(I)$, then $\mathcal{L}(I) \subset \mathcal{L}(J)$ and we have to prove that $N(Q_I(A)) \subset N(Q_J(A))$. It follows from some results of Chamarie [1] that each $Q_I(A)$ is again a maximal order over its center which is a Krull domain and that the localization map $Q_I(\cdot)$ defines a group-epimorphism from Div(A) onto Div($Q_I(A)$), where Div(\cdot) is the group of divisorial ideals, cf. e.g. [1].

Thus, if $x \in N(Q_I(\Lambda))$, then there exists a divisorial Λ -ideal A such that $Q_I(A) = Q_I(\Lambda)x$. Therefore, it will be sufficient to prove that $Q_J(A) = Q_J(\Lambda)x$. So, let $y \in Q_J(A)$, then there exists an ideal $K \in \mathcal{L}(J)$ such that $Ky \subset A \subset Q_I(A) = Q_I(\Lambda)x$, whence $Kyx^{-1} \subset Q_I(\Lambda) \subset Q_J(\Lambda)$ and thus $yx^{-1} \in Q_J(\Lambda)$ because every symmetric localization of Λ is idempotent, so $y \in Q_J(\Lambda)x$. Conversely, if $y \in Q_J(\Lambda)$ then $Ky \subset \Lambda$ for some $K \in \mathcal{L}(J)$, whence $Kyx \subset \Lambda x \subset Q_I(\Lambda)$. Thus, for every $k \in K$, we can find an ideal $L \in \mathcal{L}(I) \subset \mathcal{L}(J)$ such that $Lkyx \subset \Lambda$ whence $kyx \in Q_J(\Lambda)$ and thus $Kyx \subset Q_J(\Lambda)$, yielding that $yx \in Q_J(\Lambda)$. Thus, $Q_J(\Lambda) = Q_J(\Lambda)x$ finishing the proof that N_A is a presheaf, which is clearly separated. Therefore we are left to prove the gluing property. So, let $\{U_i : i \in I\}$ be an open covering of U and let $x \in \Gamma(U_i, N_A)$ for every $i \in I$. Then,

$$x\Gamma(U, \mathbf{O}_{1}) = x(\bigcap \Gamma(U_{i}, \mathbf{O}_{1})) = \bigcap \Gamma(U_{i}, \mathbf{O}_{1})x = \Gamma(U, \mathbf{O}_{1})x$$

whence $x \in \Gamma(U, N_1)$.

Finally, let us calculate the stalks of N_A at the point $p \in \text{Spec}(R)$. Clearly, $(N_A)_p \subset N(R_p)$. Conversely, if $x \in N(R_p)$, then there exists a divisorial A-ideal Asuch that $A_p = A_p x$. Thus, $(O_A)_p = A_p x$ and likewise $(O_{A^{-1}})_p = A_p x^{-1}$, where O_A (resp. $O_{A^{-1}}$) is the structure sheaf of A (resp. A^{-1}). Now, we can choose a neighborhood V of p such that $x \in \Gamma(V, O_A)$ and $x^{-1} \in \Gamma(V, O_{A^{-1}})$. Then,

$$x^{-1}\Gamma(V, \boldsymbol{O}_{1})x \subset x^{-1}\Gamma(V, \boldsymbol{O}_{A}) \subset \Gamma(V, \boldsymbol{O}_{A})$$

whence $\Gamma(V, O_1) x \subset x \Gamma(V, O_1)$ and likewise one can prove the other inclusion yielding that $x \in \Gamma(V, N_1)$, finishing the proof.

The sheaf N_A is not necessarily a constant sheaf, as the following example shows:

Example 1.2.. Let $\Lambda = \mathbb{C}[X, -]$ where – denotes the complex conjugation, then Λ is a maximal order with center $\mathbb{R}[X^2]$. In [6] it is proved that $\{X^2+c; c>0\}$ is precisely the set of the prime ideals of $\mathbb{R}[X^2]$ whose valuation extends to a valuation in $\mathbb{C}(X, -)$. If N_A were constant, $N(R) = \mathbb{C}(X, -)$ yielding that every localization of Λ at a prime ideal is a valuationring, a contradiction.

2. The main theorem

In this section we aim to solve question A, i.e. we will show how one can construct all maximal *R*-orders in a central simple algebra Σ over *K* from a given maximal order Λ . From [1] we retain that all maximal *R*-orders are equivalent. Of course, being conjugated defines an equivalence relation on the set of all maximal *R*-orders, so our study splits up in two cases:

I: The study of those maximal orders which are conjugated to Λ . They are of course classified by the set $\Sigma^*/N(\Lambda)$.

II: A description of the equivalence classes of nonconjugate maximal orders.

The next theorem provides such a description by means of cohomology pointed sets, cf. e.g. [2, 5].

Theorem 2.1. There is a one-to-one correspondence between:

(a) equivalence classes of nonconjugate maximal orders,

(b) elements of the pointed set $\lim_{\to} H^1_{Zar}(U, N_A)$, where the direct limit is taken over all open sets U of Spec(R) containing $X^1(R)$, the set of all height one prime ideals of R.

Proof. Let Λ' be any maximal *R*-order in Σ . By *O* (resp. *O'*) we denote the structure sheaf of Λ (resp. Λ') over Spec(*R*). *T* (the conductor) is defined by assigning to an open set *U* of Spec(*R*) the sections

$$\Gamma(U, \mathbf{T}) = \{ x \in \Sigma : \Gamma(U, \Lambda') x \subset \Gamma(U, \Lambda) \}.$$

First, we check that T is a sheaf. We claim that inclusions are well defined restriction morphisms. For, let $X(J) \subset X(I)$ be open sets of the Zariski topology of Spec(R) and let $y \in \Gamma(X(I), T)$, $x \in \Gamma(X(J), O')$, then $Lx \subset A'$ for some $L \in \mathcal{L}(J)$ whence $Lxy \subset$ $\Gamma(X(I), O) \subset \Gamma(X(J), O)$ entailing that $xy \in \Gamma(X(J), O)$ so $y \in \Gamma(X(J), T)$ finishing the proof of our claim. So, T is a presheaf.

Furthermore, if U_i is an open covering of U and if $y \in \bigcap \Gamma(U_i, \mathbf{T})$, then $\Gamma(U, \mathbf{O}')y = \bigcap \Gamma(U_i, \mathbf{O}')y \subset \bigcap \Gamma(U_i, \mathbf{O}) = \Gamma(U, \mathbf{O})$ proving that $y \in \Gamma(U, \mathbf{T})$ and therefore \mathbf{T} is a sheaf.

For every open set U of Spec(R), $\Gamma(U, O)$ and $\Gamma(U, O')$ are both maximal

 $\Gamma(U, O_R)$ -orders, hence they are equivalent. By a local application of Lemma VII.1.3 of [4] it follows that **T** is a c-O'-O-ideal contained both in O and in O'. By this we mean that for every open set U, $\Gamma(U, T)$ is a left fractional $\Gamma(U, O')$ -ideal and a right fractional $\Gamma(U, O)$ -ideal such that $(\Gamma(U, T)^{-1})^{-1} = \Gamma(U, T)$, where

$$\Gamma(U, \mathbf{T})^{-1} = \{x \in \Sigma : \Gamma(U, \mathbf{T}) x \subset \Gamma(U, \mathbf{O})\} = \{x \in \Sigma : x \Gamma(U, \mathbf{T}) \subset \Gamma(U, \mathbf{O}')\}.$$

It is readily verified that \mathbf{T}^{-1} which is defined by taking for its sections $\Gamma(U, \mathbf{T}^{-1}) = \Gamma(U, \mathbf{T})^{-1}$ is also a sheaf and a c-O-O'-ideal.

Now, let p be any height one prime ideal of R. It is well known that Λ_p and Λ'_p are both principal left and right ideal rings. Therefore, there exists an invertible element s_p of Σ such that $(\mathbf{T})_p = s_p \Lambda_p$. Furthermore, $(\mathbf{T}^{-1})_p (\mathbf{T})_p = \Lambda_p$ entailing that $\Lambda_p s_p^{-1} \Lambda'_p s_p \Lambda_p = \Lambda_p$ whence $s_p^{-1} \Lambda'_p s_p \subset \Lambda_p$. By maximality of $s_p^{-1} \Lambda s_p$ this entails that $s_p^{-1} \Lambda'_p s_p = \Lambda_p$. We claim that there is a neighborhood V(p) of p such that $s_p^{-1} (\mathbf{O}' | V(p)) s_p = \mathbf{O} | V(p)$.

Since both $\hat{\mathbf{T}}$ and $\hat{\mathbf{T}}^{-1}$ are sheaves, s_p and s_p^{-1} live on a neighborhood V(p) of p. Therefore, $s_p \Gamma(V(p), \mathbf{O}) \subset \Gamma(V(p), \mathbf{T})$ and $\Gamma(V(p), \mathbf{O}) s_p^{-1} \subset \Gamma(V(p), \mathbf{T}^{-1})$. Hence,

$$\Gamma(V(p), \boldsymbol{O})s_p^{-1} \subset \Gamma(V(p), \boldsymbol{T}^{-1}) = \Gamma(V(p), \boldsymbol{T})^{-1}$$
$$\subset (s_p \Gamma(V(p), \boldsymbol{O}))^{-1} = \Gamma(V(p), \boldsymbol{O})s_p^{-1}$$

and therefore $\Gamma(V(p), \mathbf{T}^{-1}) = \Gamma(V(p), \mathbf{O})s_p^{-1}$ and likewise, $\Gamma(V(p), \mathbf{T}) = s_p \Gamma(V(p), \mathbf{O})$. This then entails that $s_p^{-1}(\mathbf{O}' | V(p))s_p = \mathbf{O} | V(p)$.

Thus, $\bigcup V(p)$ is an open set containing $X^1(R)$. Now, $X^1(R)$ equipped with the induced Zariski topology is a Noetherian space and therefore we can find a finite number among these V(p), say $V(p_1), \ldots, v(p_n)$ such that $U = \bigcup V(p_i)$ contains $X^1(R)$.

For any $i, j \in 1, ..., n$ we have that

$$s_{p_i}(O \mid V(p_i) \cap V(p_j))s_{p_i}^{-1} = s_{p_j}(O \mid V(p_i) \cap V(p_j))s_{p_j}^{-1}$$

and this entails that $s_{p_i}^{-1} s_{p_j} \in \Gamma(V(p_i) \cap V(p_j), N_A)$. Therefore $\{V(p_i), s_{p_i}\}$ describes a section of $\Gamma(U, \Sigma^*/N_A)$. Now consider the exact sequence of sheaves of pointed sets

 $1 \rightarrow N_A \rightarrow \Sigma^* \rightarrow \Sigma^* / N_A \rightarrow 1.$

Taking sections over U yields the exact sequence of pointed sets

$$1 \to \mathcal{N}(\mathcal{A}) \to \mathcal{\Sigma}^* \to \Gamma(U, \mathcal{\Sigma}^*/N_{\mathcal{A}}) \to H^1_{\text{Zar}}(U, N_{\mathcal{A}}) \to 1.$$

Therefore, the section $\{V(p_i), s_{p_i}\}$ determines an element in $H^1_{Zar}(U, N_A)$ (and thus also in $\lim H^1_{Zar}(U, N_A)$) which differs from the distinguished element in $H^1_{Zar}(U, N_A)$ if and only if A' is not conjugated to A.

Conversely, let $s \in \lim H^1_{Zar}(U, N_A)$ and choose an open set U of Spec(R) containing $X^1(R)$ and an element $s(U) \in H^1_{Zar}(U, N_A)$ which represents s. Using the above exact sequence, s(U) is determined by some section in $\Gamma(U, \Sigma^*/N_A)$. Such a section is given by a set of couples $\{(U_i, s_i)\}$ where U_i is an open covering of U, $s_i \in \Gamma(U_i, \Sigma^*)$ for every *i* and for all *i* and *j* and we have that $s_i^{-1}s_j \in \Gamma(U_i \cap U_j, N_A)$. On *U* we will define the twisted sheaf of maximal orders O' | U by putting $O' | U_i = s_i(O | U_i)s_i^{-1}$. Using the fact that $s_i^{-1}s_j \in \Gamma(U_i \cap U_j, N_A)$ it is easily verified that this is indeed a sheaf. We claim that $\Lambda' = \Gamma(U, O' | U)$ is a maximal *R*-order.

Firstly we will show that there exists an open refinement $\{W_k\}$ of $\{U_i\}$ and sections $t_k \in \Gamma(W_k, \Sigma^*)$ such that $t_k^{-1}t_1 \in \Gamma(W_k \cap W_1, O^*)$ and with the property that the twisted sheaf of maximal orders determined by (W_k, t_k) coincides with O' on $\bigcup W_k$. Because $X^1(R)$ is a Noetherian space, there are a finite number among the U_i , say U_1, \ldots, U_n such that $U' = \bigcup U_i \supset X^1(R)$. For any i, j among $1, \ldots, n, Z(i, j) = \{p \in U_i \cap U_j : s_i^{-1}s_j \notin A_p\}$ is a finite set, because $\text{Div}(\Gamma(U, O))$ is the free abelian group generated by $X^1(R) \cap U$ for any open set U. So, $Z(1) = Z(1, 2) \cup Z(1, 3) \cup \cdots \cup Z(1, n)$ is a finite set. Now because the Zariski topology induced on $X^1(R)$ is the cofinite topology, there exists an open V in Spec(R) such that $V \cap X^1(R) = X^1(R)/Z(1)$. Take $W_1 = U_1 \cap V$, $W_i = U_i$, for $i \neq 1$, $t_1 = s_1 | W_1$ and $t_i = s_i$ for $i \neq 1$, then $t_1^{-1} \cdot t_j \in \Gamma(W_1 \cap W_j, O^*)$. Continuing in this manner we will eventually find (W_k, t_k) satisfying the requirements, in particular, if $W = \bigcup W_k$, then O' | W coincides with the twisted sheaf of maximal orders determined by the t_k .

Next we define a sheaf $\mathbf{T} \mid W$ by $\mathbf{T} \mid W_k = t_k(\mathbf{T} \mid W_k)$. Clearly, $\mathbf{T} \mid W$ is a right *O*-ideal and $(\mathbf{T} \mid W)^{-1})^{-1} = \mathbf{T} \mid W$, this yields that for every open $V \subset W$, $\Gamma(V, O)$ is a right fractional c- $\Gamma(V, O)$ -ideal. This implies that $O_1(\Gamma(V, \mathbf{T})) = \Gamma(V, O' \mid W)$ is a maximal order.

In particular, $\Gamma(W, O' | W) = \Gamma(U, O' | U)$ is a maximal order.

Finally, the reader may check that the constructions above do not depend on the choices made.

Corollary 2.2. If R is a Dedekind domain, there is a one-to-one correspondence between:

- (a) equivalence classes of non-conjugate maximal orders,
- (b) elements of $H^1_{Zar}(X, N_A)$.

3. Application: maximal orders in matrixrings

In this section we aim to characterize those locally factorial (i.e. R_p is a UFD for every $p \in \text{Spec}(R)$) Krull domains for which all maximal orders in $M_n(K)$ are conjugated. In this situation we are able to compute $H_{\text{Zar}}^1(U, N_A)$ for $A = M_n(R)$.

With \mathbf{PGL}_n we will denote $\mathbf{Aut}(\mathbf{P}_R^n)$, the automorphism scheme of the *n*-dimensional projective space over R, i.e. \mathbf{PGL}_n is the sheafification of the presheaf which assigns $\mathbf{PGL}_n(\Gamma(U, \mathbf{O}_R))$ to any open set of $\mathbf{Spec}(R)$, cf. e.g. [5].

Proposition 3.1. If R is a locally factorial Krull domain and if $A = M_n(R)$, then $H_{\text{Zar}}^1(U, N_A) = H_{\text{Zar}}^1(U, \text{PGL}_n)$ for every open set U of Spec(R).

Proof. If we assign to an open set U of Spec(R) the group $\operatorname{GL}_n(\Gamma(U, O_R)) \cdot K^* \subset \operatorname{GL}_n(K)$, then this defines a presheaf of groups. Its sheafification will be denoted by $\operatorname{GL}_n \cdot K^*$. This sheaf is clearly a subsheaf of N_A . We will show that their stalks are isomorphic. If $p \in \operatorname{Spec}(R)$ and if $x \in N(M_n(R_p))$, then $M_n(R)x = M_n(A)$ for some divisorial R_p -ideal A. Because R_p is a UFD, $A = R_p \cdot k$ for some $k \in K^*$, yielding that $x \in \operatorname{GL}_n(R_p) \cdot K^*$ proving that $\operatorname{GL}_n \cdot K^* = N_A$.

The following sequence of sheaves of groups is exact:

$$1 \rightarrow K^* \rightarrow \mathbf{GL}_n \cdot K^* \rightarrow \mathbf{PGL}_n \rightarrow 1$$

where K^* denotes the constant sheaf associated with K^* .

Taking sections over U yields the following long exact cohomology sequence:

$$1 \to \Gamma(U, K^*) \to \Gamma(U, N_A) \to \Gamma(U, \mathbf{PGL}_n)$$
$$\to 1 \to H^1_{\mathrm{Zar}}(U, N_A) \to H^1_{\mathrm{Zar}}(U, \mathbf{PGL}_n) \to 1$$

finishing the proof.

A. Dedekind domains

Proposition 3.2. If R is a Dedekind domain, then all maximal R-orders in $M_n(K)$ are conjugated if and only if $(-)^n : Cl(R) \to Cl(R)$ sending [A] to $[A^n]$ is an epimorphism.

Proof. In view of Corollary 2.2 and Proposition 3.1 we have to find an equivalent condition for $H_{Zar}^1(X, \mathbf{PGL}_n) = 1$. Writing out the long exact cohomology sequence of the following exact sequence of sheaves of groups

$$1 \rightarrow O_R^* \rightarrow \mathbf{GL}_n \rightarrow \mathbf{PGL}_n \rightarrow 1$$

entails

$$H^1_{Zar}(X, O_R^*) \xrightarrow{\delta} H^1_{Zar}(X, \mathbf{GL}_n) \rightarrow H^1_{Zar}(X, \mathbf{PGL}_n) \rightarrow H^2_{Zar}(X, O_R^*)$$

Because R is a Dedekind domain (Krull dimension = 1) $H_{Zar}^2(X, O_R^*) = 1$. Furthermore, $H_{Iat}^1(X, \mathbf{GL}_n)$ is the set of isomorphism classes of projective rank n R-modules, which we denote by $\operatorname{Proj}_n(R)$. By Steinitz' result any projective rank n module is isomorphic to $J_1 \oplus \cdots \oplus J_n$ for some fractional R-ideals J_i and δ is epimorphic if and only if there exists a fractional R-ideal I such that $J_1 \oplus \cdots \oplus J_n \cong I \oplus \cdots \oplus I$, finishing the proof.

Remark 3.3. F. Van Oystaeyen suggested a more ringtheoretical proof of this result in the following way. Because all maximal *R*-orders in $M_n(K)$ are Morita equivalent and $M_n(R)$ is Azumaya, they are all Azumaya algebras. Furthermore $Br(R) \subset Br(K)$ whence any maximal order is of the form $End_R(P)$ where $P \in Proj_n(R)$. Applying again Steinitz' theorem to the condition $End_R(P) \cong M_n(R)$ yields the same condition on Cl(R).

B. Regular local domains

We recover the classical result of M. Ramas for matrixrings:

Proposition 3.4. If R is a regular local ring of $gldim(R) \le 2$, then all maximal orders in $M_n(K)$ are conjugated.

Proof. We have to check that $H_{Zar}^1(U, \mathbf{PGL}_n) = 1$ where U = X(m), *m* being the maximal ideal of *R*. Again consider the exact sequence

$$H^{1}_{Zar}(U, O_{R}^{*}) \rightarrow H^{1}_{Zar}(U, \mathbf{GL}_{n}) \rightarrow H^{1}_{Zar}(U, \mathbf{PGL}_{n}) \rightarrow H^{2}_{Zar}(U, O_{R}^{*}).$$

Now, $H_{Zar}^1(U, \mathbf{GL}_n)$ is the set of isomorphism classes of reflexive *R*-modules which are free of rank *n* at every height one prime ideal of *R*, $\operatorname{Ref}_n(R)$. Because gldim(*R*) ≤ 2 , reflexive modules are projective whence $\operatorname{Ref}_n(R) = \operatorname{Proj}_n(R)$ and $\operatorname{Ref}_1(R) = \operatorname{Pic}(R)$. Finally, *R* being local $\operatorname{Pic}(R) = \operatorname{Proj}_n(R) = 1$ and therefore all cohomology pointed sets above are trivial except perhaps $H_{Zar}^1(U, \mathbf{PGL}_n)$ but exactness of the sequence finishes the proof.

C. Locally factorial Krull domains

Theorem 3.5. If R is a locally factorial Krull domain then all maximal orders in $M_n(K)$ are conjugated if and only if the map from Cl(R) to $Ref_n(R)$ sending [I] to $[I \oplus \cdots \oplus I]$ is surjective.

Proof. Consider the exact sequence

$$\lim H^1(U, O_R^*) \rightarrow \lim H^1(U, \operatorname{GL}_n) \rightarrow \lim H^1(U, \operatorname{PGL}_n) \rightarrow \lim H^2(U, O_R^*)$$

where the direct limit is taken over all opens U containing $X^{1}(R)$.

Because R is locally factorial, Cartier divisors coincide with Weil divisors showing that the sequence

$$1 \rightarrow O_R^* \rightarrow K \rightarrow \text{Div} \rightarrow 1$$

is exact. Because the sheaf of Weil divisors, **Div**, is flabby, $H_{Zar}^2(U, O_R^*) = 1$ for any open set U showing that the last term in the sequence vanishes.

So, by Theorem 2.1 and Proposition 3.1 all maximal orders in $M_n(K)$ are conjugated iff the map from $\lim H^1(U, O_R^*) = \operatorname{Cl}(R)$ to $\lim H^1(U, \operatorname{GL}_n) = \operatorname{Ref}_n(R)$ which is defined by sending a class of a divisorial ideal [I] to $[I \oplus \cdots \oplus I]$ is surjective.

Acknowledgement

It is a pleasure to thank F. Van Oystaeyen, J. Van Geel and M. Vanden Bergh for many stimulating conversations.

References

- [1] M. Chamarie, Anneaux de Krull non-commutatifs, Thèse, Universitè Claud-Bernard, Lyon (1981).
- [2] J. Giraud, Cohomologie non Abélienne, Grundl. der Math. Wiss. 179 (Springer, Berlin, 1971).
- [3] L. Le Bruyn, Class groups and noncommutative algebraic geometry, Proceedings of the Emmy Noether conference, Antwerp (1982).
- [4] G. Maury and J. Raynaud, Ordres Maximaux au Sens de K. Asano, Lect. Notes in Mathematics 808 (Springer, Berlin, 1981).
- [5] J.S. Milne, Etale Cohomology (Princeton Univ. Press, Princeton, 1980).
- [6] J.P. Van Deuren, J. Van Geel and F. Van Oystaeyen, Genus and a Riemann-Roch theorem for noncommutative function fields in one variable, Séminaire d'Algèbre P. Dubreil and M.P. Malliavin, Lect. Notes in Mathematics 867 (Springer, Berlin, 1981).