A NOTE ON MAXIMAL ORDERS OVER KRULL DOMAINS

Lieven LE BRUYN*
University of Antwerp, UIA, Belgium
Communicated by H. Bass
Received 8 November 1981

0. Introduction

The classical Mori-Nagata theorem (stating that the integral closure of a Noetherian domain is a Krull domain) is recently generalized to rings satisfying a polynomial identity in the following result by M. Chamarie:

Theorem 0.1 [1]. If Λ is a Noetherian prime p.i.-ring wiih center R and ring of quotients Σ, then there exists an intermediate ring $\Lambda \subset \Lambda^{\prime} \subset \Sigma$ which is a maximal order with center R^{-}(the complete integral closure of R) wh; h is a Krull domain.

Unlike in the commutative case, this 'integral closure' is by no means unique. This difficulty prompts the following question:

Question A. If Λ is a maximal order over a Krull domain R, with ring of quotients Σ (which is a central simple algebra over K, the field of fractions of R), is it possible to describe all other maximal R-orders in Σ by means of 'invariants' of Λ ?

In this paper we provide a positive answer to this question using cohomology of the sheaf of normalizing elements of Λ (introduced in [3]). Furthermore, we will apply this result in Section 3 in order to solve:

Question B. If R is a locally factorial Krull domain with field of fractions K, give necessary and sufficient conditions on R such that all maximal R-orders in $M_{n}(K)$ are conjugated.

1. Preliminaries

Throughout, we will consider the following situation. R is a Krull domain with field of fractions K and Λ is a maximal R-order in some central simple algebra Σ over K.
*The author is supported by an NFWO/FNRS grant.

With O_{R} (resp. O_{A}). We will denote the structure sheaf of R (resp. Λ) over $\operatorname{Spec}(R)$. Our first objective is the introduction of the sheaf of normalizing elements of Λ, N_{1}. It is defined by assigning to an open set U of the Zariski topology on $\operatorname{Spec}(R)$ the sections

$$
\Gamma\left(U, N_{A}\right)=N\left(\Gamma\left(U, O_{A}\right)\right)=\left\{x \in \Sigma^{*}: x \Gamma\left(U, \boldsymbol{O}_{\Lambda}\right)=\Gamma\left(U, \boldsymbol{O}_{\Lambda}\right) x\right\}
$$

Proposition 1.1. N_{A} is a sheaf of groups and the stalk in a prime p of $\operatorname{Spec}(R)$ equals $N\left(R_{p}\right)$.

Proof. Let us first check that N_{A} with inclusions as restriction morphisms is a presheaf. A typical open set of $\operatorname{Spec}(R)$ is of the form $X(I)=\{p \in \operatorname{Spec}(R): I \not \subset p\}$ for some ideal I of R and it is well known that $\Gamma\left(X(I), O_{A}\right)=Q_{I}(\Lambda)=$ $\{x \in \Sigma: L \in \not \subset(I): L x \subset \Lambda\}$ where $\nsucceq(I)=\{L \triangleleft R: I \subset \operatorname{rad}(L)\}$. So, if $X(J) \subset X(I)$, then $z(I) \subset \forall(J)$ and we have to prove that $N\left(Q_{I}(\Lambda)\right) \subset N\left(Q_{J}(\Lambda)\right)$. It follows from some results of Chamarie [1] that each $Q_{I}(\Lambda)$ is again a maximal order over its center which is a Krull domain and that the localization map $Q_{I}(\cdot)$ defines a groupepimorphism from $\operatorname{Div}(\Lambda)$ onto $\operatorname{Div}\left(Q_{I}(\Lambda)\right)$, where $\operatorname{Div}(\cdot)$ is the group of divisorial ideals, cf. e.g. [1].

Thus, if $x \in N\left(Q_{I}(\Lambda)\right)$, then there exists a divisorial Λ-ideal A such that $Q_{I}(A)=Q_{I}(\Lambda) x$. Therefore, it will be sufficient to prove that $Q_{J}(A)=Q_{J}(\Lambda) x$. So, let $y \in Q_{J}(A)$, then there exists an ideal $K \in \notin(J)$ such that $K y \subset A \subset Q_{I}(A)=Q_{I}(\Lambda) x$, whence $K y x^{-1} \subset Q_{I}(\Lambda) \subset Q_{J}(\Lambda)$ and thus $y x^{-1} \in Q_{J}(\Lambda)$ because every symmetric localization of Λ is idempotent, so $y \in Q_{J}(\Lambda) x$. Conversely, if $y \in Q_{J}(\Lambda)$ then $K y \subset \Lambda$ for some $K \in y(J)$, whence $K y x \subset \Lambda x \subset Q_{I}(A)$. Thus, for every $k \in K$, we can find an ideal $L \in \notin(I) \subset \mathscr{L}(J)$ such that $L k y x \subset A$ whence $k y x \in Q_{J}(A)$ and thus $K y x \subset Q_{J}(A)$, yielding that $y x \in Q_{J}(A)$. Thus, $Q_{J}(A)=Q_{J}(A) x$ finishing the proof that N_{A} is a presheaf, which is clearly separated. Therefore we are left to prove the gluing property. So, let $\left\{U_{i}: i \in I\right\}$ be an open covering of U and let $x \in \Gamma\left(U_{i}, N_{A}\right)$ for every $i \in I$. Then,

$$
x \Gamma\left(U, O_{1}\right)=x\left(\bigcap \Gamma\left(U_{i}, O_{1}\right)\right)=\bigcap \Gamma\left(U_{i}, O_{1}\right) x=\Gamma\left(U, O_{A}\right) x
$$

whence $x \in \Gamma\left(U, N_{1}\right)$.
Finally, let us calculate the stalks of N_{1} at the point $p \in \operatorname{Spec}(R)$. Clearly, $\left(V_{1}\right)_{p} \subset N\left(R_{p}\right)$. Conversely, if $x \in N\left(K_{p}\right)$, then there exists a divisorial Λ-ideal A such that $A_{p}=A_{p} x$. Thus, $\left(O_{A}\right)_{p}=\Lambda_{p} x$ and likewise $\left(O_{A}-1\right)_{p}=\Lambda_{p} x^{-1}$, where O_{A} (resp. $O_{A}{ }^{\text {i }}$) is the structure sheaf of A (resp. A^{-1}). Now, we can choose a neighborhood V of p such that $x \in \Gamma\left(V, O_{A}\right)$ and $x^{-1} \in \Gamma\left(V, \boldsymbol{O}_{A^{-1}}\right)$. Then,

$$
x^{-1} \Gamma\left(V, \boldsymbol{O}_{1}\right) x \subset x^{-1} \Gamma\left(V, \boldsymbol{O}_{A}\right) \subset \Gamma\left(V, \boldsymbol{O}_{A}\right)
$$

wnence $\Gamma\left(1 ; O_{1}\right) x \subset x \Gamma\left(V, O_{1}\right)$ and likewise one can prove the other inclusion vielding that $x \in \Gamma\left(V, N_{1}\right)$, finishing the proof.

The sheaf N_{A} is not necessarily a constant sheaf, as the following example shows:

Example 1.2.. Let $\Lambda=\mathbb{C}[X,-]$ where - denotes the complex conjugation, then Λ is a maximal order with center $\mathbb{R}\left[X^{2}\right]$. In [6] it is proved that $\left\{X^{2}+c ; c>0\right\}$ is precisely the set of the prime ideals of $\mathbb{R}\left[X^{2}\right]$ whose valuation extends to a valuation in $\mathbb{C}(X,-)$. If N_{A} were constant, $N(R)=\mathbb{C}(X,-)$ yielding that every localization of Λ at a prime ideal is a valuationring, a contradiction.

2. The main theorem

In this section we aim to solve question A, i.e. we will show how one can construct all maximal R-orders in a central simple algebra Σ over K from a given maximal order Λ. From [1] we retain that all maximal R-orders are equivalent. Of course, being conjugated defines an equivalence relation on the set of all maximal R-orders, so our study splits up in two cases:

I: The study of those maximal orders which are conjugated to Λ. They are of course classified by the set $\Sigma^{*} / N(\Lambda)$.

II: A description of the equivalence classes of nonconjugate maximal orders.
The next theorem provides such a description by means of cohomology pointed sets, cf. e.g. [2,5].

Theorem 2.1. There is a one-to-one correspondence between:
(a) equivalence classes of nonconjugate maximal orders,
(b) elements of the pointed set $\lim _{\rightarrow} H_{\mathrm{Zar}}^{\mathrm{l}}\left(U, N_{A}\right)$, where the direct limit is taken over all open sets U of $\operatorname{Spec}(R)$ containing $X^{1}(R)$, the set of all height one prime ideals of R.

Proof. Let Λ^{\prime} be any maximal R-order in $\boldsymbol{\Sigma}$. By \boldsymbol{O} (resp. \boldsymbol{O}^{\prime}) we denote the structure sheaf of Λ (resp. Λ^{\prime}) over $\operatorname{Spec}(R)$. \boldsymbol{r} (the conductor) is defined by assigning to an open set U of $\operatorname{Spec}(R)$ the sections

$$
\Gamma(U, \boldsymbol{T})=\left\{x \in \Sigma: \Gamma\left(U, \Lambda^{\prime}\right) x \subset \Gamma(U, \Lambda)\right\} .
$$

First, we check that \boldsymbol{r} is a sheaf. We claim that inclusions are well defined restriction morphisms. For, let $X(J) \subset X(I)$ be open sets of the Zariski topology of $\operatorname{Spec}(R)$ and let $y \in \Gamma(X(I), \boldsymbol{T}), x \in \Gamma\left(X(J), O^{\prime}\right)$, then $L x \subset \Lambda^{\prime}$ for some $L \in \mathscr{L}^{(J)}$ whence $L x y \subset$ $\Gamma(X(I), O) \subset \Gamma(X(J), O)$ entailing that $x y \in \Gamma(X(J), O)$ so $y \in \Gamma(X(J), \boldsymbol{T})$ finishing the proof of our claim. So, \boldsymbol{r} is a presheaf.
Furthermore, if U_{i} is an open covering of U and if $y \in \bigcap \Gamma\left(U_{i}, \boldsymbol{r}\right)$, then $\Gamma\left(U, \boldsymbol{O}^{\prime}\right) y=\bigcap \Gamma\left(U_{i}, \boldsymbol{O}^{\prime}\right) y \subset \bigcap \Gamma\left(U_{i}, \boldsymbol{O}\right)=\Gamma(U, \boldsymbol{O})$ proving that $y \in \Gamma(U, \boldsymbol{r})$ and therefore $\boldsymbol{\Gamma}$ is a sheaf.

For every open set U of $\operatorname{Spec}(R), \Gamma(U, \boldsymbol{O})$ and $\Gamma\left(U, \boldsymbol{O}^{\prime}\right)$ are both maximal
$\Gamma\left(U, O_{R}\right)$-orders, hence they are equivalent. By a local application of Lemma VII.1.3 of [4] it follows that \boldsymbol{T} is a c- $\boldsymbol{O}^{\prime}-\boldsymbol{O}$-ideal contained both in \boldsymbol{O} and in \boldsymbol{O}^{\prime}. By this we mean that for every open set $U, \Gamma(U, \boldsymbol{T})$ is a left fractional $\Gamma\left(U, \boldsymbol{O}^{\prime}\right)$-ideal and a right fractional $\Gamma(U, O)$-ideal such that $\left(\Gamma(U, \boldsymbol{T})^{-1}\right)^{-1}=\Gamma(U, \boldsymbol{T})$, where

$$
\Gamma(U, \boldsymbol{T})^{-1}=\{x \in \Sigma: \Gamma(U, \boldsymbol{T}) x \subset \Gamma(U, \boldsymbol{O})\}=\left\{x \in \Sigma: x \Gamma(U, \boldsymbol{T}) \subset \Gamma\left(U, \boldsymbol{O}^{\prime}\right)\right\}
$$

It is readily verified that \boldsymbol{T}^{-1} which is defined by taking for its sections $\Gamma\left(U, \boldsymbol{T}^{-1}\right)=$ $\Gamma(U, \boldsymbol{T})^{-1}$ is also a sheaf and a c-O-O'-ideal.

Now, let p be any height one prime ideal of R. It is well known that Λ_{p} and Λ_{p}^{\prime} are both principal left and right ideal rings. Therefore, there exists an invertible element s_{p} of Σ such that $(\boldsymbol{T})_{p}=s_{p} \Lambda_{p}$. Furthermore, $\left(\boldsymbol{1}^{-1}\right)_{p}(\boldsymbol{T})_{p}=\Lambda_{p}$ entailing that $\Lambda_{r} s_{p}{ }^{1} \Lambda_{p}^{\prime} s_{p} \Lambda_{p}=\Lambda_{p}$ whence $s_{p}^{-1} \Lambda_{p}^{\prime} s_{p} \subset \Lambda_{p}$. By maximality of $s_{p}^{-1} \Lambda_{p}$ this entails that $s_{p}{ }^{\prime} \Lambda_{p}^{\prime} s_{p}=\Lambda_{p}$. We claim that there is a neighborhood $V(p)$ of p such that $s_{p}{ }^{\prime}\left(\boldsymbol{O}^{\prime} \mid V(p)\right) s_{p}=\boldsymbol{O} \mid V(p)$.

Since both \boldsymbol{T} and \boldsymbol{r}^{-1} are sheaves, s_{p} and s_{p}^{-1} live on a neighborhood $V(p)$ of p. Therefore, $s_{p} \Gamma(V(p), \boldsymbol{O}) \subset \Gamma(V(p), \boldsymbol{T})$ and $\Gamma(V(p), \boldsymbol{O}) s_{p}^{-1} \subset \Gamma\left(V(p), \boldsymbol{r}^{-1}\right)$. Hence,

$$
\begin{aligned}
\Gamma(V(p), \boldsymbol{O}) s_{p}^{-1} & \subset \Gamma\left(V(p), \boldsymbol{T}^{-1}\right)=\Gamma(V(p), \boldsymbol{T})^{-1} \\
& \subset\left(s_{p} \Gamma(V(p), \boldsymbol{O})\right)^{-1}=\Gamma(V(p), \boldsymbol{O}) s_{p}^{-1}
\end{aligned}
$$

and therefore $\Gamma\left(V(p), \boldsymbol{r}^{-1}\right)=\Gamma(V(p), O) s_{p}^{-1} \quad$ and likewise, $\quad \Gamma(V(p), \boldsymbol{T})=$ $s_{p} \Gamma(V(p), \boldsymbol{O})$. This then entails that $s_{p}^{-1}\left(\boldsymbol{O}^{\prime} \mid V(p)\right) s_{p}=\boldsymbol{O} \mid V(p)$.

Thus, $\bigcup V(p)$ is an open set containing $X^{1}(R)$. Now, $X^{1}(R)$ equipped with the induced Zariski topology is a Noetherian space and therefore we can find a finite number among these $V(p)$, say $V\left(p_{1}\right), \ldots, v\left(p_{n}\right)$ such that $U=\bigcup V\left(p_{i}\right)$ contains $X^{\prime}(R)$.

For any $i, j \in 1, \ldots, n$ we have that

$$
s_{p_{i}}\left(\boldsymbol{O} \mid \boldsymbol{V}\left(p_{t}\right) \cap V\left(p_{j}\right)\right) s_{p_{t}}^{-1}=s_{p_{j}}\left(\boldsymbol{O} \mid \boldsymbol{V}\left(p_{i}\right) \cap V\left(p_{j}\right)\right) s_{p_{j}}^{-1}
$$

and this entails that $s_{p_{i}}^{-1} s_{p_{j}} \in \Gamma\left(V\left(p_{i}\right) \cap V\left(p_{j}\right), N_{A}\right)$. Therefore $\left\{V\left(p_{i}\right), s_{p_{i}}\right\}$ describes a section of $\Gamma\left(U, \Sigma^{*} / N_{1}\right)$. Now consider the exact sequence of sheaves of pointed sets

$$
1 \rightarrow N_{1} \rightarrow \Sigma^{*} \rightarrow \Sigma^{*} / N_{1} \rightarrow 1
$$

Taking sections over U yields the exact sequence of pointed sets

$$
1 \rightarrow N(A) \rightarrow \Sigma^{*} \rightarrow \Gamma\left(U, \Sigma^{*} / N_{A}\right) \rightarrow H_{\mathrm{Zar}}^{1}\left(U, \mathcal{N}_{A}\right) \rightarrow 1
$$

Therefore, the section $\left\{V\left(p_{i}\right), s_{p_{i}}\right\}$ determines an element in $H_{\mathrm{Zar}}^{\mathrm{l}}\left(U, N_{A}\right)$ (and thus also in $\lim H_{7 a}^{1} \cdot\left(U, N_{A}\right)$) which differs from the distinguished element in $H_{l a r}^{1}\left(U, N_{1}\right)$ if and only if Λ^{\prime} is not conjugated to Λ.

Conversely, let $s \in \lim H_{\text {Zar }}^{1}\left(U, N_{A}\right)$ and choose an open set U of $\operatorname{Spec}(R)$ containing $X^{\prime}(R)$ and an element $s(U) \in H_{\mathrm{Zar}}^{\mathrm{l}}\left(U, N_{A}\right)$ which represents s. Using the above exact sequence, $s(U)$ is determined by some section in $\Gamma\left(U, \Sigma^{*} / N_{A}\right)$. Such a section is given by a set of couples $\left\{\left(U_{i}, s_{i}\right)\right\}$ where U_{i} is an open covering of U,
$s_{i} \in \Gamma\left(U_{i}, \Sigma^{*}\right)$ for every i and for all i and j and we have that $s_{i}^{-1} s_{j} \in \Gamma\left(U_{i} \cap U_{j}, N_{A}\right)$. On U we will define the twisted sheaf of maximal orders $\boldsymbol{O}^{\prime} \mid U$ by putting $\boldsymbol{O}^{\prime} \mid U_{i}=$ $s_{i}\left(O \mid U_{i}\right) s_{i}^{-1}$. Using the fact that $s_{i}^{-1} s_{j} \in \Gamma\left(U_{i} \cap U_{j}, N_{A}\right)$ it is easily verified that this is indeed a sheaf. We claim that $\Lambda^{\prime}=\Gamma\left(U, O^{\prime} \mid U\right)$ is a maximal R-order.

Firstly we will show that there exists an open refinement $\left\{W_{k}\right\}$ of $\left\{U_{i}\right\}$ and sections $t_{k} \in \Gamma\left(W_{k}, \Sigma^{*}\right)$ such that $t_{k}^{-1} t_{1} \in \Gamma\left(W_{k} \cap W_{1}, O^{*}\right)$ and with the property that the twisted sheaf of maximal orders determined by $\left(W_{k}, t_{k}\right)$ coincides with O^{\prime} on $\bigcup W_{k}$. Because $X^{1}(R)$ is a Noetherian space, there are a finite number among the U_{i}, say U_{1}, \ldots, U_{n} such that $U^{\prime}=\bigcup U_{i} \supset X^{1}(R)$. For any i, j among $1, \ldots, n, Z(i, j)=$ $\left\{p \in U_{i} \cap U_{j}: s_{i}^{-1} s_{j} \notin \Lambda_{p}\right\}$ is a finite set, because $\operatorname{Div}(\Gamma(U, O))$ is the free abelian group generated by $X^{1}(R) \cap U$ for any open set U. So, $Z(1)=Z(1,2) \cup$ $Z(1,3) \cup \cdots \cup Z(1, n)$ is a finite set. Now because the Zariski topology induced on $X^{1}(R)$ is the cofinite topology, there exists an open V in $\operatorname{Spec}(R)$ such that $V \cap X^{1}(R)=X^{1}(R) / Z(1)$. Take $W_{1}=U_{1} \cap V, W_{i}=U_{i}$, for $i \neq 1, t_{1}=s_{1} \mid W_{1}$ and $t_{i}=s_{i}$ for $i \neq 1$, then $t_{1}^{-1} \cdot t_{j} \in \Gamma\left(W_{1} \cap W_{j}, O^{*}\right)$. Continuing in this manner we will eventually find (W_{k}, t_{k}) satisfying the requirements, in particular, if $W=\bigcup W_{k}$, then $O^{\prime} \mid W$ coincides with the twisted sheaf of maximal orders determined by the t_{k}.

Next we define a sheaf $\boldsymbol{T} \mid \boldsymbol{W}$ by $\boldsymbol{T} \mid \boldsymbol{W}_{k}=\boldsymbol{t}_{k}\left(\boldsymbol{T} \mid \boldsymbol{W}_{k}\right)$. Clearly, $\boldsymbol{T} \mid \boldsymbol{W}$ is a right O-ideal and $\left.(\boldsymbol{r} \mid W)^{-1}\right)^{-1}=\boldsymbol{r} \mid W$, this yields that for every open $V \subset W, \Gamma(V, O)$ is a right fractional $\mathrm{c}-\Gamma(V, O)$-ideal. This implies that $O_{1}(\Gamma(V, \boldsymbol{T}))=\Gamma\left(V, O^{\prime} \mid W\right)$ is a maximal order.

In particular, $\Gamma\left(W, O^{\prime} \mid W\right)=\Gamma\left(U, O^{\prime} \mid U\right)$ is a maximal order.
Finally, the reader may check that the constructions above do not depend on the choices made.

Corollary 2.2. If R is a Dedekind domain, there is a one-to-one correspondence between:
(a) equivalence classes of non-conjugate maximal orders,
(b) elements of $H_{\mathrm{Zar}}^{1}\left(X, N_{\Lambda}\right)$.

3. Application: maximal orders in matrixrings

In this section we aim to characterize those locally factorial (i.e. R_{p} is a UFD for every $p \in \operatorname{Spec}(R)$) Krull domains for which all maximal orders in $M_{n}(K)$ are conjugated. In this situation we are able to compute $H_{\mathrm{Zar}}^{\mathrm{Z}}\left(U, N_{A}\right)$ for $\Lambda=M_{n}(R)$.

With $\mathbf{P G L}_{n}$ we will denote $\operatorname{Aut}\left(P_{R}^{n}\right)$, the automorphism scheme of the n-dimensional projective space over R, i.e. $\mathbf{P G L}_{n}$ is the sheafification of the presheaf which assigns $\mathrm{PGL}_{n}\left(\Gamma\left(U, \boldsymbol{O}_{R}\right)\right)$ to any open set of $\operatorname{Spec}(R)$, cf. e.g. [5].

Proposition 3.1. If R is a locally factorial Krull domain and if $\Lambda=M_{n}(R)$, then $H_{\mathrm{Zar}}^{1}\left(U, N_{A}\right)=H_{\mathrm{Zar}}^{1}\left(U, \mathbf{P G L}_{n}\right)$ for every open set U of $\operatorname{Spec}(R)$.

Proof. If we assign to an open set U of $\operatorname{Spec}(R)$ the group $\mathrm{GL}_{n}\left(\Gamma\left(U, O_{R}\right)\right) \cdot K^{*} C$ $\mathrm{GL}_{n}(K)$, then this defines a presheaf of groups. Its sheafification will be denoted by $\mathbf{G L}_{n} \cdot \boldsymbol{K}^{*}$. This sheaf is clearly a subsheaf of \boldsymbol{N}_{A}. We will show that their stalks are isomorphic. If $p \in \operatorname{Spec}(R)$ and if $x \in N\left(M_{n}\left(R_{p}\right)\right.$), then $M_{n}(R) x=M_{n}(A)$ for some divisorial R_{p}-ideal A. Because R_{p} is a UFD, $A=R_{p} \cdot k$ for some $k \in K^{*}$, yielding that $x \in \mathrm{GL}_{n}\left(R_{p}\right) \cdot K^{*}$ proving that $\mathbf{G L}_{n} \cdot K^{*}=N_{\Lambda}$.

The following sequence of sheaves of groups is exact:

$$
1 \rightarrow \boldsymbol{K}^{*} \rightarrow \mathbf{G L}_{n} \cdot \boldsymbol{K}^{*} \rightarrow \mathbf{P G L}_{n} \rightarrow 1
$$

where K^{*} denotes the constant sheaf associated with K^{*}.
Taking sections over U yields the following long exact cohomology sequence:

$$
\begin{aligned}
1 & \rightarrow \Gamma\left(U, K^{*}\right) \rightarrow \Gamma\left(U, N_{A}\right) \rightarrow \Gamma\left(U, \mathbf{P G L}_{n}\right) \\
& \rightarrow 1 \rightarrow H_{\mathrm{Zar}}^{1}\left(U, N_{1}\right) \rightarrow H_{\mathrm{Zar}}^{1}\left(U, \mathbf{P G L}_{n}\right) \rightarrow 1,
\end{aligned}
$$

finishing the proof.

A. Dedekind domains

Proposition 3.2. If R is a Dedekind domain, then all maximal R-orders in $M_{n}(K)$ are conjugated if and only if $(-)^{n}: \mathrm{Cl}(R) \rightarrow \mathrm{Cl}(R)$ sending $[A]$ to $\left[A^{n}\right]$ is an epimorphism.

Proof. In view of Corollary 2.2 and Proposition 3.1 we have to find an equivalent condition for $H_{Z a r}^{1}\left(X, \mathbf{P G L}_{n}\right)=1$. Writing out the long exact cohomology sequence of the following exact sequence of sheaves of groups

$$
1 \rightarrow \boldsymbol{O}_{R}^{*} \rightarrow \mathbf{G L}_{n} \rightarrow \mathbf{P G L}_{n} \rightarrow 1
$$

entails

$$
H_{Z \mathrm{ar}}^{1}\left(X, \boldsymbol{O}_{R}^{*}\right) \xrightarrow{\delta} H_{Z \mathrm{Zar}}^{1}\left(X, \mathbf{G L}_{n}\right) \rightarrow H_{\mathrm{Zar}}^{1}\left(X, \mathbf{P} \mathbf{G L}_{n}\right) \rightarrow H_{\mathrm{Zar}}^{2}\left(X, \boldsymbol{O}_{R}^{*}\right) .
$$

Because R is a Dedekind domain (Krull dimension $=1$) $H_{\text {Zar }}^{2}\left(X, O_{R}^{*}\right)=1$. Furthermore, $H_{l+t}^{\mathrm{l}}\left(X, \mathbf{G L}_{n}\right)$ is the set of isomorphism classes of projective rank n R-module, which we denote by $\operatorname{Proj}_{n}(R)$. By Steinitz' result any projective rank n module is isomorphic to $J_{1} \oplus \cdots \oplus J_{n}$ for some fractional R-ideals J_{t} and δ is epimorphic if and only if there exists a fractional R-ideal I such that $J_{1} \oplus \cdots \oplus J_{n} \cong$ $I \uparrow \cdots \not I$ yielding that $J_{1} \cdots J_{n} \equiv I^{n}$, finishing the proof.

Remark 3.3. F. Van Oystaeyen suggested a more ringtheoretical proof of this result in the following way. Because all maximal R-orders in $M_{n}(K)$ are Morita equivalent and $M_{n}(R)$ is Azumaya, they are all Azumaya algebras. Furthermore $\operatorname{Br}(R) \subset \operatorname{Br}(K)$ whence any maximal order is of the form $\operatorname{End}_{R}(P)$ where $P \in \operatorname{Proj},(R)$. Applying again Steinitz' theorem to the condition $\operatorname{End}_{R}(P) \cong M_{n}(R)$ vicld the same condition on $\mathrm{Cl}(R)$.

B. Regular local domains

We recover the classical result of M. Ramas for matrixrings:

Proposition 3.4. If R is a regular local ring of $g \operatorname{ldim}(R) \leq 2$, then all maximal orders in $M_{n}(K)$ are conjugated.

Proof. We have to check that $H_{\mathrm{Zar}}^{1}\left(U, \mathbf{P G L}_{n}\right)=1$ where $U=X(m), m$ being the maximal ideal of R. Again consider the exact sequence

$$
H_{\mathrm{Zar}}^{1}\left(U, O_{R}^{*}\right) \rightarrow H_{\mathrm{Zar}}^{1}\left(U, \mathbf{G L}_{n}\right) \rightarrow H_{\mathrm{Zar}}^{1}\left(U, \mathbf{P G L} L_{n}\right) \rightarrow H_{\mathrm{Zar}}^{2}\left(U, O_{R}^{*}\right)
$$

Now, $H_{\mathrm{Zar}}^{1}\left(U, \mathbf{G L}_{n}\right)$ is the set of isomorphism classes of reflexive R-modules which are free of rank n at every height one prime ideal of $R, \operatorname{Ref}_{n}(R)$. Because $\operatorname{gldim}(R) \leq 2$, reflexive modules are projective whence $\operatorname{Ref}_{n}(R)=\operatorname{Proj}_{n}(R)$ and $\operatorname{Ref}_{1}(\mathrm{R})=\operatorname{Pic}(R)$. Finally, R being local $\operatorname{Pic}(R)=\operatorname{Proj}_{n}(R)=1$ and therefore all cohomology pointed sets above are trivial except perhaps $H_{\mathrm{Zar}}^{1}\left(U, \mathbf{P G L}_{n}\right)$ but exactness of the sequence finishes the proof.

C. Locally factorial Krull domains

Theorem 3.5. If R is a locally factorial Krull domain then all maximal orders in $M_{n}(K)$ are conjugated if and only if the map from $\mathrm{Cl}(R)$ to $\operatorname{Ref}_{n}(R)$ sending [I] to [I $\oplus \cdots \oplus I]$ is surjective.

Proof. Consider the exact sequence

$$
\lim H^{1}\left(U, \boldsymbol{O}_{R}^{*}\right) \rightarrow \lim H^{1}\left(U, \mathbf{G} \mathbf{L}_{n}\right) \rightarrow \lim H^{1}\left(U, \mathbf{P G} \mathbf{L}_{n}\right) \rightarrow \lim H^{2}\left(U, \boldsymbol{O}_{R}^{*}\right)
$$

where the direct limit is taken over all opens U containing $X^{1}(R)$.
Because R is locally factorial, Cartier divisors coincide with Weil divisors showing that the sequence

$$
1 \rightarrow \boldsymbol{O}_{R}^{*} \rightarrow K \rightarrow \operatorname{Div} \rightarrow 1
$$

is exact. Because the sheaf of Weil divisors, Div, is flabby, $H_{\mathrm{Zar}}^{2}\left(U, \boldsymbol{O}_{R}^{*}\right)=1$ for any open set U showing that the last term in the sequence vanishes.

So, by Theorem 2.1 and Proposition 3.1 all maximal orders in $M_{n}(K)$ are conjugated iff the map from $\lim H^{1}\left(U, \boldsymbol{O}_{R}^{*}\right)=\mathrm{Cl}(R)$ to $\lim H^{1}\left(U, \mathbf{G L}_{n}\right)=\operatorname{Ref}_{n}(R)$ which is defined by sending a class of a divisorial ideal $[I]$ to $[I \oplus \cdots \oplus I]$ is surjective.

Acknowledgement

It is a pleasure to thank F. Van Oystaeyen, J. Van Geel and M. Vanden Bergh for many stimulating conversations.

References

[1] M. Chamarie, Anneaux de Krull non-commutatifs, Thèse, Universitè Claud-Bernard, Lyon (1981).
[2] J. Giraud, Cohomologie non Abélienne, Grundl. der Math. Wiss. 179 (Springer, Berlin, 1971).
[3] L. Le Bruyn, Class groups and noncommutative algebraic geometry, Proceedings of the Emmy Noether conference, Antwerp (1982).
[4] G. Maury and J. Raynaud, Ordres Maximaux au Sens de K. Asano, Lect. Notes in Mathematics 808 (Springer, Berlin, 1981).
[5] J.S. Milne. Etale Cohomology (Princeton Univ. Press, Princeton, 1980).
[6] J.P. Van Deuren, J. Van Geel and F. Van Oystaeyen, Genus and a Riemann-Roch theorem for noncommutative function fields in one variable, Séminaire d'Algèbre P. Dubreil and M.P. Malliavin, Lect. Notes in Mathematics 867 (Springer, Berlin, 1981).

